Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
نویسندگان
چکیده
The Lactococcus lactis ccpA gene, encoding the global regulatory protein CcpA, was identified and characterized. Northern blot and primer extension analyses showed that the L. lactis ccpA gene is constitutively transcribed from a promoter that does not contain a cre sequence. Inactivation of the ccpA gene resulted in a twofold reduction in the growth rate compared with the wild type on glucose, sucrose and fructose, while growth on galactose was almost completely abolished. The observed growth defects could be complemented by the expression of either the L. lactis or the Bacillus subtilis ccpA gene. The disruption of the ccpA gene reduced the catabolite repression of the gal operon, which contains a cre site at the transcription start site and encodes enzymes involved in galactose catabolism. In contrast, CcpA activates the transcription of the cre-containing promoter of the las operon, encoding the glycolytic enzymes phosphofructokinase, pyruvate kinase and L-lactate dehydrogenase, because its transcription level was fourfold reduced in the ccpA mutant strain compared with the wild-type strain. The lower activities of pyruvate kinase and L-lactate dehydrogenase in the ccpA mutant strain resulted in the production of metabolites characteristic of a mixed-acid fermentation, whereas the fermentation pattern of the wild-type strain was essentially homolactic.
منابع مشابه
Changes in glycolytic activity of Lactococcus lactis induced by low temperature.
The effects of low-temperature stress on the glycolytic activity of the lactic acid bacterium Lactococcus lactis were studied. The maximal glycolytic activity measured at 30 degrees C increased approximately 2.5-fold following a shift from 30 to 10 degrees C for 4 h in a process that required protein synthesis. Analysis of cold adaptation of strains with genes involved in sugar metabolism disru...
متن کاملMolecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr.
The Lactococcus lactis ptsH and ptsI genes, encoding the general proteins of the phosphoenolpyruvate-dependent phosphotransferase system, HPr and enzyme I, respectively, were cloned, and the regulatory role of HPr was studied by mutational analysis of its gene. A promoter sequence was identified upstream of the ptsHI operon, and the transcription start site was mapped by primer extension. The r...
متن کاملCcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
Recent work has shown that in Bacillus subtilis catabolite repression of several operons is mediated by a mechanism dependent on DNA-binding protein CcpA complexed to a seryl-phosphorylated derivative of HPr [HPr(Ser-P)], the small phosphocarrier protein of the phosphoenolpyruvate-sugar phosphotransferase system. In this study, it was found that a transposon insertional mutation resulted in the...
متن کاملCatabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein.
Inducer exclusion was not important in catabolite repression of the Bacillus subtilis gnt operon. The CcpA protein (also known as AlsA) was found to be necessary for catabolite repression of the gnt operon, and a mutation (crsA47, which is an allele of the sigA gene) partially affected this catabolite repression.
متن کاملTwo different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
There are two levels of control of the expression of the levanase operon in Bacillus subtilis: induction by fructose, which involves a positive regulator, LevR, and the fructose phosphotransferase system encoded by this operon (lev-PTS), and a global regulation, catabolite repression. The LevR activator interacts with its target, the upstream activating sequence (UAS), to stimulate the transcri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 30 4 شماره
صفحات -
تاریخ انتشار 1998